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ABSTRACT

IMPROVING MRI SURFACE COIL DECOUPLING
TO REDUCE B1 DISTORTION

by

Christian Larson

The University of Wisconsin-Milwaukee, 2014
Under the Supervision of Professor George W. Hanson

As clinical MRI systems continue to advance, larger focus is being given to image

uniformity. Good image uniformity begins with generating uniform magnetic �elds, which

are easily distorted by induced currents on receive-only surface coils. It has become an

industry standard to combat these induced currents by placing RF blocking networks on

surface coils. This paper explores e�ect of blocking network impedance of phased array

surface coils on B1 distortion. It has been found and veri�ed, that traditional approaches

for blocking network design in complex phased arrays can leave undesirable B1 distortions

at 3 Tesla. The traditional approach of LC tank blocking is explored, but shifts from

the idea that higher impedance equals better B1 distortion at 3T. The result is a new

design principle for a tank with a �nite inductive reactance at the Larmor Frequency. The

solution is demonstrated via simulation using a simple, single, large tuning loop. The

same loop, along with a smaller loop, is used to derive the new design principle, which is

then applied to a complex phased array structure.
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1 Introduction

As the �eld of Magnetic Resonance Imaging (MRI) advances, systems become more com-

plex. One challenge faced by the engineers and physicist designing these systems, is the

interactions between di�erent portions of the systems, and the e�ect those interactions

have on performance. As more imaging is done with localized surface coils, in order to

obtain better local signal to noise ratios and resolution, the interactions between those

coils becomes greater. As the phased array receive only coil has become in industry stan-

dard, the arrays have gotten more complex, and contain larger numbers of elements and

denser structures. A result of the added complexity and density of the phased array, is a

more complicated interaction and coupling to the system body coil. If the surface coil is

not properly decoupled, undesirable distortion in the B1 �eld will occur [1] .

2 Magnetic Resonance Imaging Background

2.1 MRI Physics Background.

With advances in the �eld of magnetic resonance imaging, 3 Tesla systems are being more

widely used. Magnetic Resonance operates on the principle of exciting magnetic dipoles

to spin, and using the received signal from those spinning magnetic dipoles to create an

image. There are many steps that go into this process, which for the purposes of this

work will largely be ignored, in order to keep the focus on the physics of the systems. In

order to generate an MRI image there are three main magnetic �elds at play which must

be understood, the B0 �eld (static main magnetic �eld), the B1 �eld (time varying RF

�eld that excites spins), and the gradient �eld (a much slower time varying �eld used to

gain spatial information about the received signals).

An equation often used to describe the behavior of the magnetic dipoles, or net
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magnetization vector (M), at a single location is the Bloch equation [2]

dM

dt
= γ (M×B)−

(
Mx

T2

ai +
My

T2

aj +
Mz −Mo

T1

ak

)
. (1)

Here ai, aj, and ak are the unit vectors in x, y, and z respectively. T1 and T2 are the

longitudinal and transverse relaxation times.

The B0 �eld strength is often used to describe an MRI system. In this case the system

being studied is a 3T system, meaning the static magnetic �eld is 3 Tesla. The B0 �eld

is static, and the orientation of the �eld de�nes the coordinates system by de�ning the

z-axis. An important relationship surrounding the B0 �eld is the Larmor relationship [6]

ω = γB. (2)

The Larmor relationship describes the natural frequency of the nuclear spin(ω) and its

proportion to the static magnetic �eld B. γ is the gyromagnetic ratio, and often also

referred to as the Larmor Frequency, and given in a ratio of MHz
T

[2]. Unless being used

for spectroscopy, the MR system is generally used to image hydrogen, which has a Larmor

frequency of γ = 42.576 MHz [4]. At 3 Tesla, this gives a natural frequency of f0=

127.72 MHz. Any spin that is excited in the plane transverse (x,y plane) to the B0 �eld,

will precess at its natural frequency around the B0 �eld (z-axis). A precessing magnetic

dipole generates a signal that can be picked by an RF receiver.

The B1 �eld, which is used to excite spins, will be the the main focus of this work.

The B1 �eld is a polarized RF �eld used to excite the spin of the protons, and is applied

in the plane transverse to the B0 �eld. Generally the B1 �eld is circulary polarized in the

x-y plane, and for our purposes is driven by RF pulse at the 3T Larmor frequency, and

can be described by

B1x = B1 cos(ωt) (3)

B1y = −B1 sin(ωt). (4)
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When driven at the Larmor Frequency the total applied B �eld can be written as

B(t) =


B1 cos(ωot)

−B1 sin(ωot)

B0

 . (5)

By looking at the B �eld in a rotating reference frame (that is rotating at the Larmor

frequency) , the circularly polarized B1 �eld can be looked as constant both in orientation

and magnitude [2].

Another important factor to be considered in MR physics is the �ip angle. For the

purposes of this work, the �ip angle will always be considered to be transverse to the B0

�eld (90o �ip angle). In reality di�erent �ip angles are desirable depending on the imaging

being done. The �ip angle and RF �eld strength are related as [3]

θ = γB1τ. (6)

Here B1 is the RF �eld magnitude, and τ is the RF pulse duration. Ideally this �ip angle

would be constant across the entire imaging volume of interest, however non-uniformities

will cause the �ip angle at a speci�c position to deviate from (6), and can be described

by the adjusted �ip angle θa [3]

θa (r) = ζθn. (7)

In (7), ς is the the scaling factor for B1 at position (r). In a uniform sample, a uniform �ip

angle across the sample would return a uniform signal intensity across the sample. In order

to generate a uniform �ip angle as described in (6), a uniform B1 �eld is required across

the imaging sample. If the �ip angle varies as described in (7), there will be varying signal

intensities across a uniform sample, which is non-desirable. This drives the requirement

in MRI systems to generate the most homogeneous B1 �eld possible. This becomes more

di�cult as �eld increases, since B1 homogeneity worsens as B0 strength increases [3]. In
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most systems the B1 transmit �eld is generated by a volume resonator, or volume coil, in

this case also referred to as the body coil.

2.2 Body Coil Design Background

Volume resonators, and body coils speci�cally, come in many di�erent sizes and topologies

including saddle coils, TEM coils, and birdcage coils. Birdcage coils are the most popular

topology for body coils today due to their high B1 homogeneity [5][6]. Birdcage resonators

themselves come in several di�erent topologies including low-pass, band-pass, and high-

pass. Birdcage coils are designed to consist of two circular end rings at either end of the

coil, with conductive strips connecting the end rings to each other as shown in Figure 1

below. The conductive strips are often referred to as the �legs� or �rungs� of the birdcage.

Figure 1: Birdcage Body Coil Geometry.

The di�erence between and high pass and low pass birdcage topology are the location

of the capacitors. For a high-pass birdcage the capacitors are located on the end rings,

and placed between the rungs of the birdcage. Conversely for the low-pass birdcage the
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capacitors are located at the center of each rung, while the end rings remain inductive

[5][6]. The birdcage design is based on the principle that a transverse magnetic �eld is

generated by an axial current, with a distribution one sinusoidal cycle around the wall

de�ned by the birdcage cylinder. This current is de�ned by (8), where θ is the azimuthal

angle of the cylinder [6]

I = Io cos (θ) . (8)

As can be seen in Figure 1 the birdcage is not a continuous cylindrical sheet, but

rather approximates one with evenly distributed rungs around the cylinder. With this

approximation, the coil becomes an LC ladder �lter with the capacitance and inductance

adjusted to achieve a phase shift of 2π in the voltage around the circumference of the

end ring. Simple circuit analysis shows that a sinusoidally varying voltage on the end ring

will create a sinusoidally varying current on the rungs of the birdcage. It is the magnetic

�elds generated by the rungs of the coil that add to give a homogeneous B1 �eld. The

size of the homogenous region of B1 is determined by how well the current distribution on

the rungs of the birdcage approximate a continuous current on a �cylindrical sheet� [6].

The detailed analysis for obtaining the resonance conditions for the LC ladder network is

presented in [6], and summarized by

ωo =
1

2
√
LC sin

(
π
N

) (9)

ωo =
2√
LC

sin
(
π

N

)
. (10)

With (9) and (10) representing a high-pass and low-pass birdcage respectively, where N is

the number of rungs. If the coil is long enough, the �eld geometries at iso-center will be

determined solely by the current on the rungs. In fact a perfectly homogeneous B1 �eld

is possible if the coil is in�nitely long. However, in practice an in�nitely long coil is not

possible and there must be some current return path [11]. For the purposes of this work,
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the actual coil geometries of the design, and resulting �eld properties will be detailed in

Chapter 3.

2.3 Surface Coil Background

Surface coils come in many di�erent topologies, geometries and form factors, but are

generally broken down into two di�erent categories: Transmit-Receive coils, and Receive-

only coils. Surface coils sit closer to the sample being imaged than the body coil, and

therefore can provide much higher signal to noise ratios, and improved image resolution.

Generally, a receive coil is a resonant (inductive) loop, tuned using distributed capacitors

along its perimeter. For the purposes of this paper, the focus will be on receive only

coils, and more speci�cally phased array coils. A phased array coil is an array of multiple

receiving loops, designed to simultaneously receive signal from the sample being imaged,

an example geometry is shown in Figure 2.
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Figure 2: Generic phased array receive coil structure.

This work will not go into the details of surface coil design, but rather focus on the

single aspect of decoupling surface coils during RF transmit by the body coil. Vaughan's

�RF Coils for MRI� gives a good overview for surface coil design [7]. During RF transmit

by the body coil, general practice is to detune the receive coils in the system in order

to minimize the current induced in the receive coil, which can contribute to B1 inhomo-

geneities [1][8][9][10]. A resonant loop placed into a time varying B1 �eld will have a

voltage induced along its perimeter, which can be described by [8]

Eemf = −δt

¨
B1dS. (11)

Ohm's law then dictates that the induced current in the loop will be an e�ect of this
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voltage, and the impedance of the loop will be

Iloop =
Eemf

Zloop

(12)

where Z is complex.

Since B1 is a time varying magnetic �eld, the current induced in the loop is time

varying, which in turn generates another magnetic �eld [8]. Since a volume resonator is

designed to produce a homogenous B1 �eld when empty, the presence of an inadequately

decoupled surface loop will cause inhomogeneities in B1 via the secondary �eld generated

by the induced current. In order to reduce the issue described above, standard practice is

to increase the impedance of the loop during body coil transmit, in order to reduce the

induced current in the loop.

There are several di�erent methods for increasing the loop impedance during transmit,

and go back to resonating during the receive mode. The �rst method is what is referred to

as a passive blocking network, which gets its name because is it self-activating during RF

pulsing. This is accomplished by placing an inductor in parallel with one of the distributed

capacitors to create an LC tank, which is resonant at the Larmor frequency. The inductor

is switched in and out of the circuit using parallel diodes which are biased by the RF

pulsing [1]. An example of this circuit is shown in Figure 3 below [7].
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Figure 3: Passive detuning circuit using parallel LC tank.

The second type of detuning circuit is an active blocking network. It is similar to the

passive circuit in that it again uses an LC tank resonating at the Larmor frequency, but

uses a pin diodes biased by a DC signal. This allows for greater timing control of the

detuning circuit. The �nal type of decoupling circuit is a hybrid decoupling presented in

[9].

Since inadequate detuning, or inadequate blocking, can result in secondary B �elds,

causing B1 inhomogeneities, rules for quantifying necessary blocking are highly desired.

In [1] an experimental analysis is done in a GE Healthcare system to determine necessary

blocking impedances. Kochorian et al [10] performed a more rigorous experiment, which

varied loop size to asses its impact on blocking impedance. Additionally Kochorian et

al developed a method to assess the impact of inadequate blocking on image quality.
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Finally Taracila et al produced a design rule via analytical analysis to determine necessary

blocking to keep B1 distortions under 5% [8].

3 Problem Demonstration

3.1 Body Coil Design Details

For the remainder of this work the body coil being referenced will be a 3.0T high pass

birdcage. Generally in an MR system the body coil is surrounded by an RF shield to protect

the coil from outside noise generated by the gradient coil and superconducting magnet

[5]. In most systems the body coil end rings and legs lie on one cylindrical surfaces, as

shown in Figure 4.

Figure 4: High pass birdcage and RF shield.

Additionally the body coil has two drive points on what is referred to as the service

end, end ring shown in Figure 5 below. The drive points are located 90o out of phase and

driven with cosine wave phase shifted by 90o on one of the ports.
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Figure 5: Body Coil Drive Scheme.

The body coil is a 16 rung birdcage with an overall length of 560mm from end to

end. As discussed above the coil has two di�erent diameters between the legs and the

end rings. There are two capacitors in series between each rung, the capacitor locations

are shown in Figure 6.

Figure 6: High pass birdcage capacitor locations.
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3.2 Body Coil Performance Parameters

There are several parameters on which the body coil performance is measured to demon-

strate performance, and will be detailed in this section. The body coil as described above

was modeled in ANSYS HFSS, as well as constructed in the lab which will allow for the

comparison of the model to real life measurements.

The �rst step in ensuring coil performance both in simulation, and in the lab, is to

tune the coil, which is performed using a two probe tuning method. This tuning method

involves placing two coplanar broad-band tuning loops opposite each other in the body

coil, at the z=0 point, and measuring the frequency at which the probes most strongly

couple. There is also a loop tuned to the Larmor frequency oriented orthogonally to

the two tuning loops in order to short out the orthogonal mode of the body coil. The

probes are then rotated to positions every 22.5 degrees around the coil to make sure each

azimuthal position is similar. A photo of the tuning setup can be seen in Figure 7 below,

while Figure 8 shows the S21 output on the network analyzer for the vertical mode being

measured.
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Figure 7: Two probe tuning �xture for body coil tuning.
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Figure 8: Vertical mode S21 from body coil tuning probes.

As detailed in Section 2 the Larmor frequency of interest for a 3.0T system is 127.72

MHz. Therefore the desire is for each of the eight modes to be tuned as tightly to 127.72

MHz as possible. Table 1 below shows the tuning frequency of each mode as measured in

the simulation as well as in the lab. The angle of the measurement is the azimuthal angle

from vertical. The measurements demonstrate there is agreement between the simulation

and the prototype coil. Additionally the table shows that the tuning is very balanced

between each mode in the model.

Measurement Angle (deg) Model fo(MHz) Lab fo(MHz) Di�erence (MHz)

0 127.42 127.75 0.33
22.5 127.4 127.72 0.32
45 127.43 127.71 0.28
67.5 127.4 127.73 0.33
90 127.43 127.77 0.34

112.5 127.4 127.81 0.41
135 127.44 127.80 0.36
157.5 127.4 127.78 0.38

Table 1: 2 Probe Tuning Measurements

The next tuning step is to check for agreement in the S-parameters for the coil itself.

As was discussed before there are two drive ports on the coil, which allows the use of two

port analysis to be used. For the simulation and lab measurements the S11, S22, and
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S21 parameters will be considered. Figure 9 and Figure 10 below show the simulation S-

parameters and lab measured S-parameters respectively. The details of the S-parameters

are shown in Table 2, which demonstrate the input matching is better in the actual coil,

and so is the isolation. However the model shows that the inputs resonate at the same

frequency as the two probe measurement.

Figure 9: S-parameters from HFSS model.

Figure 10: S-parameters measured on prototype body coil.
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Model Model Measured Measured

fo(MHz) Magnitude @ 127.72MHz (dB) fo(MHz) Magnitude @ 127.72MHz (dB)
S11 127.75 -1.95 127.18 -3.74
S22 127.75 -1.95 127.22 -4.47
S21 127.2 -24 127.75 -37.86

Table 2: S-Parameters: Magnitude and resonant frequency for body coil model and body
coil prototype.

The E �eld distributions are shown in Figure 11 below for the axial, sagittal, and

coronal planes respectively. The plots show a balanced distribution, with the highest

�elds at the end rings of the coil. Additionally, the current distributions in Figure 11 show

relatively balanced current on each rung. If closely inspected it can be seen one end ring

carrying slightly more current than the other, which is re�ected with slightly higher �elds

at one end ring. This will become more evident in the B1 plots shown in Figure 12.
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Figure 11: E-Field and current distributions for body coil model.

The main parameters of interest for this work are the B1 parameters. Figure 12 below

shows the B1 distribution across the main planes of interest; axial and sagittal respectively

in the �rst row. The second row shows two di�erent coronal planes, �rst located at iso-

center. The second located in what is de�ned as the surface coil coronal plane, which

is ~14.5 cm below iso-center. The importance of the second coronal plane becomes

important when a surface coil is introduced near the plane. More detail about the plane

will be given later. As shown in Figure 12, the �elds are well centered and relatively

homogeneous over the imaging volume at iso-center, with slightly higher �elds near the

end ring carrying more current discussed above. As a side note the axial and sagittal
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planes do not extend all the way to the bottom of the coil as the patient table and other

pieces of the system occupy this region, and therefore it is not of interest.

Figure 12: B1 �eld maps for empty body coil model.

For the purposes of this work, a quanti�cation of B1 homogeneity was for the planes

of interest. There are several di�erent methods which could be used, however The Associ-

ation of Electrical Equipment and Medical Imaging Manufacturers, from here on referred

to as NEMA, Peak Deviation Non-Uniformity (PDNU) method will be used [12]

N = 100
Smax+ Smin

Smax− Smin
. (13)

The NEMA Standards Publication �Determination of Image Uniformity in Diagnostic Mag-

netic Resonance Images� provides methods for calculating MR image non-uniformities.

Since the B1 transmit �eld uniformity is directly related to the received signal, and image

quality, the same methods can be used to evaluate the �eld homogeneity. Additionally,
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the other methods provided in the NEMA standard are used to reduce image noise before

calculating uniformities. However, since only B1 transmit is being considered, noise reduc-

tion, and noise contribution is not a concern, therefore the Peak Deviation Non-Uniformity

was chosen as the best parameter for measuring B1 homogeneity. For the interest of this

work, the homogeneity in the coronal plane will be most important, for reasons that will

become clear in Section 3.4

Since the NEMA PDNU equation is written as a non-uniformity, if homogeneity (uni-

formity) is the parameter of interest, it can be rewritten as (14), and simpli�ed into (15)

below, which will be referred to as the modi�ed NEMA PDNU from here on.

U = 1−N (14)

U =
200

1 + Smax
Smin

(15)

For the purposes of this experiment a 40cm by 42cm rectangle, centered at iso-center

and placed in the XZ plane was chosen as the measured region of interest. Since the

measurement is a ratio, it remains constant despite changes in drive power to the coil,

but for consistency sake the drive power was kept at 1000 watts per drive, or 2000 watts

total. Figure 12 above shows what the �eld distribution on this plane looks like at the

speci�ed drive power, and (15) produced a uniformity of 65.2% and drives 11 uT at

iso-center.

3.3 Surface Coil Design Details

In Section 2, the background of surface coils, and speci�cally phased array receive coils

was given. The surface coil used in this work is a �xed position receive only phased array

with a combination of single loops and butter�y receivers, along with its receive circuitry.

The surface area of the loop geometries are given in Table 3.
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Loop 1 Loop 2 Butter�y

Area (cm2) 129.3 163.8 244

Table 3: Surface coil surface area per loop.

The surface coil receiver loops have two decoupling circuits per loop. The decoupling

circuits are parallel LC resonant tanks tuned to the Larmor frequency of 127.72MHz. In

the system the surface coil is positioned such that the loops are 15 cm below iso-center

as shown in Figure 13.

Figure 13: Surface coil position in body coil, 15cm below iso-center.

3.4 Surface Coil Body Coil Interactions

Once the surface coil is placed into the body coil there are several impacts to the body

coil. It is very important to emphasize here that we are looking at the surface coil in the
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�decoupled� state, or with its blocks activated to high impedance, for the remainder of

this paper. This is because we are interested in the non-uniformities in the B1 transmit

�eld generated by the body coil. The impact of most interest is the B1 non-uniformity,

however the easiest to measure is the tuning impact, which will be looked at �rst. The

largest tuning impact is to the vertical mode of the body coil, however every mode is

impacted as detailed in Table 4, as measured in the lab.

Empty fo(MHz) Surface coil Present fo(MHz) Di�erence fo(MHz)

0 127.75 127.48 -0.27
22.5 127.72 127.48 -0.24
45 127.71 127.54 -0.17
67.5 127.73 127.63 -0.1
90 127.77 127.67 -0.1

112.5 127.81 127.67 -0.14
135 127.80 127.66 -0.13
157.5 127.78 127.58 -0.2

Table 4: Tuning impact of surface coil presence versus empty body coil by varied azimuthal
measuring angle.

Figure 14 below shows the frequency shift versus angular position according to (16)

with the radial scale given in MHz.

f(θ) = foempty (θ)− foSC
(θ) (16)
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Figure 14: Resonant frequency shift in surface coil presence from empty body coil vs
azimuthal measurement angle.

There are also tuning impacts to the S-parameters, as shown in Figure 15. The largest

impact is to the measured isolation between the two ports, or the S21 parameter, which

is reduced from -37.86dB to -18.7dB at 127.72MHz. This indicates that the ports are

now coupling relatively well through the surface coil coil, even when it is in the decoupled

state.



www.manaraa.com

23

Figure 15: Lab measured S-parameters with surface coil present.

The impact to be focused on is the impact to the B1 uniformity. While the surface

coil doesn't have a large impact in the coronal plane at iso-center, it does have an impact

in the sagittal plane, axial plane, and the largest impact in the coronal plane just above

the coil surface. Figure 16 gives a good qualitative image of the distortions to the axial,

sagittal, and coronal �elds at iso-center when the decoupled surface coil is introduced. It

is noted that the axial and sagittal planes both show large disturbances near the surface

coil surface. These are caused by the secondary �elds adding to the B1 �elds generated

by the body coil.

Figure 16: B1 �eld maps with surface coil present, showing the axial, sagittal, and coronal
planes at iso-center.

The problem with looking at the axial and sagittal slices is that they are orthogonal

to the surface coil. Looking at the coronal plane just above the surface coil provides the

greatest insight the non-uniformities introduced by the secondary �elds. The surface coil
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coronal plane as de�ned in Section 3.2 is de�ned as the plane parallel to the surface coil

loops, and sitting 5 mm above the coil surface, with the same dimensions as the coronal

plane at iso-center. For ease of comparison Figure 17 shows the B1 in the surface coil

coronal plane, �rst in the empty condition, then in the presence of the surface coil. It is

incredibly clear the disturbance in the plane is caused by the surface coil presence.

Figure 17: B1 �eld in the surface coil coronal plane in the empty condition and with the
surface coil present.

Again the modi�ed NEMA PDNU (15), can be used to de�ne uniformity for the empty

and surface coil present conditions as shown in Table 5 below [12]. The reduction in

uniformity in the empty condition is seen because the plane dimensions didn't change, but

moved down in space. This brings it closer to the end rings of the bird-cage, causing higher

�elds at that location, while the minimum seen near the plane edge in other locations

remains similar. However the surface coil presence still reduces the uniformity in the plane

by 13%.

Empty(%) Surface Coil Present(%)

PDNU 43.4115 30.3856

Table 5: Modi�ed NEMA PDNU measured in the surface coil coronal plane, for the empty
and surface coil present conditions.
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4 Solution Theory

4.1 Inductive Blocking Introduction

It is clear from the previous section that the surface coil has an undesirable e�ect on B1

homogeneity. Taracila et al, who provided the most comprehensive paper on recommended

blocking impedance, would recommend a minimum impedance for each loop as shown in

Table 6 per (17), where S is the area occupied by the loop [8].

|Zl| [ohm]

S [cm2]

∣∣∣∣∣
5%

≈ 1

4
fo [MHz] (17)

Loop Size (cm2) Recommended Zl(ohms) Actual Zl(ohms)

Loop 1 129.3 4128.55 ~2x106

Loop 2 163.8 5230.13 ~2x106

Butter�y 244 7790.92 ~2x106

Table 6: Recommended minimum blocking value and actual implemented blocking value.

As is easily seen in Table 6 the blocking impedance per loop vastly exceeds the recom-

mendation, yet there are still uniformity issues observed. This is believed to be due to the

complicated structure of the phased array coil. As the structures grow more complicated,

the number of capacitive overlaps increase, which cause unaccounted for current loops to

form within the phased array structure [13]. This indicates that in a structure like this,

induced currents in individual loops can be minimized, but overall surface currents cannot

be eliminated, and therefore must be managed in a way that minimizes their contribution

to B1 distortion.

If a receive only loop in the body coil is treated as a resonant coupled circuit, shown

in Figure 18, Kirkho�'s Law can be used to derive the relationship for the induced current

[14]. If the second loop has an inductive impedance, Kirkho�'s Law shows that the

induced current will be 180o out of phase with the excitation current, as shown in (18).
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Figure 18: Resonant coupled circuit model.

is = −ib

∣∣∣∣ Xm

XCS +XLS

∣∣∣∣ (18)

Conversely, if the loop has a capacitive impedance, the current will be in phase with the

excitation current. If the induced current is in phase with the excitation current, the

secondary B �eld will be in the same direction as the B1 �eld, and therefore result in a

higher B1 local to the induced current.

4.2 Large Loop Experiment

In order to verify the above theory in a simpler structure before applying to the compli-

cated geometry of the surface coil, experiments were performed on single loops tuned to

the Larmor frequency at 3.0T. The loop size selected for the experiment was based on

the mode short from the two probe tuning �xture discussed in Section 3. This speci�c

geometry was selected because it is tuned to the Larmor frequency of 127.72 MHz. This

was veri�ed by �rst inserting the loop into the simulation model, and measuring the cou-

pling between the two drive points on the body coil. In Figure 19 it can be seen that

the resonance is split around 127.72 MHz indicating the loop is tuned to same resonant

frequency as the coil.
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Figure 19: Body coil S21 parameter with tuned resonant loop present.

The tuning loop is 20 cm x 40 cm and is constructed of 1 cm wide 3M copper tape.

The loop has six discrete capacitors spaced along it. The details of the tuning loop design

are given in Figure 20.

Figure 20: Tuning loop design details.

The �rst step in setting up the simulations was to determine how many, and of what
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value, resonant tanks be implemented in the circuit. C1 and C4 were the natural choices

for tank locations, since they had di�erent capacitor values than the other four capacitors.

However, the decision of how many tanks to implement, still had to be made. An arbitrarily

low impedance value of 1.8 Ω/cm2 of blocking was chosen to test versus in�nite blocking.

A parallel LC tank providing an inductive reactance of 1440 Ω was implemented at C1.

For the in�nite case, C1 was simply removed creating a true open circuit at that location.

Figure 21 shows the resulting B1 maps from the two experiments, with the inductive block

on the left and the in�nite block on the right.

Figure 21: B1 maps for a single inductive and a single in�nite block on a large resonant
loop.

The �gure makes it apparent that the inductive block is more e�ective at reducing

B1 distortions. It also shows that another blocking location may be desirable to further

reduce the distortion. A second resonant tank was added at C4 with the same inductive

reactance as the �rst tank. Figure 22 illustrates that the B1 distortion again improves,

and again appears to be better than two in�nite blocks, although the di�erence is less

than in the single block case.
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Figure 22: B1 maps for dual inductive and dual in�nite blocks on a large resonant loop.

Based on the above results it was decided to move forward with two blocks per loop

con�guration. With only two data points for blocking values the next step was to try

and determine the optimal blocking for a loop of this size. First a plot of the imaginary

portion of the impedance (reactance) versus inductor value for a parallel LC circuit was

created based on (19), (20), (21), with C = 21.6 pF. The plot was concentrated around

the resonance condition and is shown in Figure 23.

ZC =
1

jωC
(19)

ZL = jωL (20)

ZTank = −j
(

ωL

ω2LC − 1

)
(21)
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Figure 23: Reactance versus inductor value for a parallel LC tank with C=21.6 pF.

From this plot a set of inductor values were selected to be tested. These inductor

values, their corresponding tank impedance, and overall loop impedance are detailed in

Table 7. The table also details the average surface current induced in the loop at each

blocking value. Since induced current is related to B1 created by the body coil, an e�ort

was made to normalize the B1 seen by each loop, by adjusting the body coil drive power

until Bavewas equal for every situation according to (22). The elliptical surface was 45

cm in the z-direction and 50 cm in the x-direction, located at a position 5mm above the

loop. Note that tanks resonance occurs when L ~ 78.89 nH for C = 21.6 pF.

Bave =

¨

ellipse

B · ds (22)
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Lval (nH) Xblock(ohms) Xloop(ohms) Jave(A/m)

60 291.1 582.2 0.459074353
65 544.2 1088.4 0.237964519
68 1008.5 2017 0.121445683
68.5 1165.7 2331.4 0.114787558
69 1377.4 2754.8 0.10832228
69.5 1677.6 3355.2 0.104695161
70 2136.7 4273.4 0.104323645
70.5 2926 5852 0.106040092
71 4602.1 9204.2 0.113983374
71.5 10576 21152 0.119078045
71.89 120000000 240000000 0.124528534
72 -37773 -75546 0.128743054
72.5 -6857.1 -13714.2 0.142595043
75 -1391.3 -2782.6 0.227821507
80 -569.1 -1138.2 0.507101019

Table 7: Induced surface current versus LC tank blocking values for a large resonant loop.

In this simulation it is clear that induced current is minimized not when the LC blocks

are at resonance, but rather with an inductive impedance of 2146.7 ohms each. However,

as stated previously, simply minimizing surface current may not be enough when complex

geometries are introduced. Therefore the loop was also evaluated using the modi�ed

NEMA PDNU parameter. This evaluation also removed the dependence on drive strength,

since the parameter is a ratio of the �eld within a single con�guration. For the modi�ed

NEMA PDNU analysis, the same rectangular plane used in Section 3 was used here,

and the results are detailed in Table 8. Again the B1 uniformity is maximized for an

inductive impedance of 2146.7 ohms per resonant block. For reference Figure 24 shows

the B1 comparison maps of the maximum B1 uniformity and the in�nitely reactive blocking

condition respectively.
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Lval (nH) Xblock(ohms) Xloop(ohms) PDNU(%U)

60 291.1 582.2 2.64
65 544.2 1088.4 23.65
68 1008.5 2017 52.99
68.5 1165.7 2331.4 55.15
69 1377.4 2754.8 56.73
69.5 1677.6 3355.2 57.67
70 2136.7 4273.4 58.17
70.5 2926 5852 57.26
71 4602.1 9204.2 56.19
71.5 10576 21152 55.16
71.89 120000000 240000000 54.70
72 -37773 -75546 53.10
72.5 -6857.1 -13714.2 49.92
75 -1391.3 -2782.6 33.06
80 -569.1 -1138.2 7.79

Table 8: Modi�ed NEMA PDNU versus LC tank blocking values for a large resonant loop.

Figure 24: B1 map for LC tanks producing the maximum modi�ed NEMA PDNU value
versus the in�nite reactance blocking tank.

The above plots show that during the in�nite blocking condition, the secondary B1

being generated is adding to the primary B1 inside of the loop, while taking away from it

outside the loop. With the inductive 2146.7 ohm per block, the disturbance is much less

pronounced, and seems to be balanced over the loop conductors themselves, indicating

a less cohesive current �ow in the loop. In order to verify this theory, a surface vector

plot of each loop was created in Figure 25, with the inductive block on the left, and the
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in�nite block on the right. It appears that the in�nite block is allowing a stronger current

loop to �ow on the inside edge of the conductor.

Figure 25: Surface current vector map for LC tanks producing the maximum modi�ed
NEMA PDNU value versus the in�nite reactance blocking tank.

This phenomenon is explained in Figure 26. If Z1 and Z2 are in�nite blocking impedances,

i1 and i2 will be entirely lossless current loops (neglecting conductor resistivity). However,

on the inside edge of the conductor i1 and i2 create loop i3. Similarly i4 is created on the

outside by the same phenomenon. If Z1 and Z3 have a �nite impedance, some of i1, and

some of i2 will transfer through the impedance to the other loop, losing energy along the

way. This reduces the magnitude of the current seen by i3 and i4, which results in lower

�eld disturbances.
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Figure 26: Diagram of induced currents on a large resonant loop with two blocking
locations.

4.3 Small Loop Experiment

In order to ascertain the dependence of the above result on loop size the same experiment

was repeated for a small sized tuning loop more representative of the loop size in the

surface coil. The loop was again tuned to 127.72 MHz and its design details are shown in

Figure 27. For simplicity the small loop had distributed capacitors of equal value on the

loop, and the tank locations were left along the system Z-axis.
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Figure 27: Small resonant loop design details.

Table 9 details the results from the small loop experiment.
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Lval (nH) Xblock(ohms) Xloop(ohms) Jave(A/m) PDNU(%U)

13.99 24.43 48.87 0.106276774 21.4545
18.99 57.23 114.47 0.076349107 50.058
21.99 117.39 234.78 0.048275094 64.529
22.49 137.77 275.54 0.045354907 64.5201
22.99 165.19 330.38 0.04233898 64.5113
23.49 204.09 408.18 0.039771808 64.5021
23.99 263.56 527.13 0.037655155 64.493
24.49 365.81 731.62 0.036660403 64.4984
24.99 582.88 1165.78 0.034396025 64.4921
25.49 1356.00 2712.00 0.033622134 64.467
25.88 1303200.00 2606400.00 0.03259011 64.4672
25.99 -4925.60 -9851.2 0.032468417 64.4656
26.49 -902.52 -1805.04 0.032461859 64.456
28.99 -193.62 -387.24 0.040960688 57.8395
33.99 -87.05 -174.10 0.100240477 35.3826

Table 9: Induced surface current and modi�ed NEMA PDNU versus LC tank blocking
values for a small resonant loop.

4.4 Desired Blocking versus Loop size

It must be noted that in the above results the sampling plane was not adjusted in size

to match the loop of interest. This causes the smaller loop sizes to have their results

dominated by the undisturbed �eld in the body coil making the disturbances less apparent.

Nonetheless both data sets show a strong correlation, the large loop indicating a value of

5.34 Ω/cm2, and the small loop a value of 2.34 Ω/cm2 for a single loop. Figure 28 shows

the plots of the two di�erent data sets with the lower B1 valued end points removed. The

next step is to apply the solution to the existing problem with the surface coil.



www.manaraa.com

37

Figure 28: Modi�ed NEMA PDNU versus impedance per loop for a large resonant loop
and small resonant loop.

5 Solution Demonstration

5.1 Application of Solution with Current Blocking Locations

The results achieved in Section 4 show B1 distortion improvement for single decoupled

loops in an MRI system. The next logical step is to apply the results from Section 4 to

the surface coil to see if improvements over the existing blocking scheme can be made.

In order to simplify the solution, the decision was made to attempt to keep the blocking

locations in the same quantity and locations used by the existing scheme. By keeping

locations the same, implementing the solution practically would only require an inductor

value change, and no other change to the blocking topology of the surface coil. Since

two di�erent values were calculated in Section 4, depending on loop size, both values will

be checked on the existing surface coil.

The �rst investigation was done with an inductive blocking value of 5.34 Ω/cm2, with

two blocking locations on very loop. The details of the blocks are shown in Table 10 .
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Loop Size (cm2) Ztotal (ohms) Zblock (ohms) Ltank (µH)

Loop 1 129.3 737.1 368.55 72.63
Loop 2 163.8 933.9 466.95 75.13
Butter�y 244 1390.8 695.4 78.46

Table 10: Inductive block details for 5.34 Ω/cm2 application to surface coil loops.

The resulting B1 maps can be seen in Figure 29. A comparison to the maps created by

the existing blocking scheme appear to show that the inductive blocking scheme performs

more poorly than the existing scheme. This qualitative conclusion is con�rmed by looking

at the modi�ed NEMA PDNU, which is is an extremely low 6.47% for this con�guration.

Figure 29: B1 maps for 5.34 Ω/cm2 inductive blocking, implemented at the existing block-
ing locations. Images show the axial, sagittal, and surface coil coronal planes respectively

A closer look at the images shows the secondary B1 �eld is adding to the primary B1

outside of the loops, while taking away from the primary B1 inside the loops. This is a

strong indication that the reactive portion of the impedance is too low in magnitude, and

inductive in nature. This was con�rmed by dropping the impedance values of the blocks

to match the 2.34 Ω/cm2 result achieved in Section 4.3. With the blocks set to 2.34

Ω/cm2 a modi�ed NEMA PDNU value of 2.5% was achieved. The B1 maps with the

lower blocking values, shown in Figure 30, show a more dramatic e�ect of the secondary

B1 adding outside of the loops, and taking away from the primary B1 inside of the loops.
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Figure 30: B1 maps for 2.34 Ω/cm2 inductive blocking, implemented at the existing block-
ing locations. Images show the axial, sagittal, and surface coil coronal planes respectively

5.2 Application of Solution with new Blocking Locations

After reviewing the results from Section 5.1 another experiment was run with new blocking

locations. These locations were chosen based on the arguments from Dr. Boskamp and

Dr. Goldhaber [13], that parasitics create unaccounted for loops in the complex geometry

of the surface coil. A discussion with Dr. Selaka Bulumulla and Dr. Saikat Saha gave

some direction on choosing decoupling locations. The theory in controlling the currents

in multiple loops, has to do with balancing the current between all loops created by the

parasitic capacitances between each loop. The theory is similar to what is shown in Figure

26, but is re-illustrated in Figure 31 for clarity. Even if each loop is opened to an in�nite

impedance, the parasitics between the loops will still create an outer loop of current, in

phase with the excitation �eld. Inductive blocking on each loop causes the inner loop to

be 180o out of phase with the outer loop. If the currents between the two loops can be

adequately balanced, the total current in the system can be minimized. Obviously this

gets more complicated as the array structure, and the number of overlaps grows, but it

gives a starting point.
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Figure 31: Current sharing diagram for two overlapped resonant loops.

Based on this new blocking locations were selected, and the number of blocks were

reduced to one block per single loop, and maintaining the existing two blocks per butter�y

loop. The single blocks carried a value of 5.75 Ω/cm2, while the butter�y loops were

blocked at 11.5 Ω/cm2. The reason a higher impedance is chosen for the butter�y loops,

is due to their more complicated geometry and crossed conductors. Additionally, the

images in Section 5.1 show the strongest distortions are caused by the butter�y loops.

Because of this, the small scale experiments are less likely to apply and higher blocking

was chosen, but kept �nite in order to attempt a current balance as described in Figure

31.

Figure 32 shows the empty B1 in the surface coil coronal plane, the B1 with surface

coil present, the B1 with the new blocking locations and in�nite impedance at each block,

and B1 with the inductive blocking scheme over the same FOV. Figure 33 shows the same

con�gurations in the axial plane, and Figure 34 shows the same con�gurations for the

sagittal plane. Figures 32, 33, and 34 all have the empty condition in the top left, the

surface coil in the top right, the newly located in�nite blocks in the bottom left, and the

newly located inductive blocks in the bottom right. The pictures show that that inductive

blocking at the new locations appears to perform better than the in�nite blocking at the

new locations. It appears as though it performs similarly to the standard surface coil
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blocking from an image uniformity perspective, but is hard to tell, especially since all

images are normalized to the surface coil coronal plane.

Figure 32: B1 maps in the surface coil coronal plane for the empty condition, the existing
surface coil blocking scheme, a reduced number of inductive blocks, and a reduced number
of in�nite blocks clockwise from top left.
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Figure 33: B1 maps in the axial plane for the empty condition, the existing surface coil
blocking scheme, a reduced number of inductive blocks, and a reduced number of in�nite
blocks clockwise from top left.
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Figure 34: B1 maps in the Sagittal plane for the empty condition, the existing surface coil
blocking scheme, a reduced number of inductive blocks, and a reduced number of in�nite
blocks clockwise from top left.

Again it should be noted when with the updated blocking locations the total number of

blocks was reduced by 10, from 28 to 18. With the reduced number of blocking locations,

the improvement in body coil drive port isolation between in�nite blocking, and inductive

blocking is evident. Figure 35 shows the simulated S21 plots of the standard surface coil,

reduced in�nite blocking, and of the reduced inductive blocking respectively. It is quite

clear from the plots that at the resonant frequency, inductive blocking provides a further

2.47dB of isolation over the in�nite blocks at the same locations, which is another strong

indicator that the body coil and surface coil are coupling less. It can be seen that the

isolation with reduced inductive blocking, is very close to the isolation provided with the

standard blocking scheme, -16.33dB versus -16.99dB respectively.
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Figure 35: Simulated S21 parameter for the standard surface coil, surface coil with a
reduced number of in�nite blocks, and a reduced number of inductive blocks at the same
locations.
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The modi�ed NEMA PDNU numbers are summarized in Table 11 below. It is clear

from the numbers that in the reduced con�guration, the inductive blocking performs much

better than the traditional in�nite LC tank. Additionally the inductive blocking slightly

outperforms the current surface coil con�guration with 10 less blocking locations. Table

12 shows how the performance numbers change when an elliptical FOV is adopted, which

is more re�ective of what is used in the actual system. It shows the reduced inductive

blocking greatly outperforms the standard surface coil scheme when the elliptical FOV is

adopted.

Empty Surface coil Reduced ∞ Blocking Reduced Ind Blocking

NEMA PDNU 43.41% 30.39% 27.28% 32.63%

Table 11: Blocking Scheme Comparisons

Empty Surface coil Reduced ∞ Blocking Reduced Ind Blocking

NEMA PDNU 56.25% 28.36% 21.58% 39.87%

Table 12: New Blocking Scheme with Elliptical FOV

6 Conclusions and Future Work

6.1 Conclusions

It has clearly been demonstrated that blocking networks with an inductive impedance

show the ability to provide better B1 uniformity than traditional in�nite blocks, even when

the number of blocking networks are reduced. There are several physical principals at

play which favor inductive impedance over in�nite blocking, including �eld loops, and

parasitic e�ects in complex phased arrays. The application of inductive blocking was �rst

demonstrated on a single large loop placed at iso-center of the coil. It was then con�rmed

using a smaller single loop at the same position. The second experiment also showed that

the optimal blocking impedance per loop area, seemed to change as loop size changed.
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The application was then performed at the existing blocking locations on the surface

coil. This application showed a much poorer performance than the standard in�nite

reactance blocking in the existing surface coil. The B1 maps in this con�guration showed

too much current, 180 degrees out of phase with the excitation current, was �owing in

the surface coil loops. After this new blocking locations were chosen for the non-butter�y

loops in the coil. The new locations were chosen on the principal of current sharing,

and the value of the blocks were slightly higher than those predicted by the large loop

experiment. The butter�y loops locations were kept the same, and the values increased

in an attempt to reduced the impact the butter�y loops had on B1 distortion. However,

the values were kept �nite to still allow the current sharing principle to work. With the

new locations and values, an improvement in B1 distortion was observed. This result is

made more promising by the fact that the number of blocking networks were reduced by

35%, indicating that in the future there is a lot of room for optimization.

6.2 Future Work

As MRI technology continues to advance, and image quality becomes more and more

critical, B1 uniformity will continue to get more attention during development phases.

It would be advantageous to continue to develop and optimize phased array decoupling

techniques. This work provides a good basis by showing that inductive decoupling may

prove a better alternative to standard decoupling techniques.

Moving forward there is a lot of opportunity for optimization of the inductive de-

coupling scheme demonstrated here, both for single loop and phased array applications.

In the single loop application, more work studying the dependence of optimum reactive

impedance on loop conductor dimensions would prove bene�cial. Also looking at loop

position in the primary B1 �eld may provide a more robust engineering principle which can

be followed. In the phased array application, further study of the current sharing principle

could provide the most improvement over the work of this paper. Speci�cally, a study of
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how parasitic e�ects change optimal values as phased arrays grow in complexity would be

a very logical next step.
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